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Since the discovery of graphene monolayers, a variety of 2D crystals have been 

explored both theoretically and experimentally. Most recently, domain-hybridized 

graphene and boron nitride (C-BN) monolayers have successfully been fabricated. Our 

research group has proposed a 2D superlattice monolayer consisting of well-aligned 

alternating graphene and boron nitride stripes and shown that this hetero-phase 2D 

crystalline monolayer is structurally very stable and electronically semiconducting. In 

this research, we further investigate the feasibility of tailoring the electronic property of 

C-BN monolayer superlattice by applying mechanical strain. Using the first-principles 

calculation based on density functional theory, we compute detailed electronic band 

structures of C-BN superlattices subject to mechanical strain, with respect to stripe width. 

The dramatic bandgap changes of armchair superlattices are presented and the 

mechanically tuned spin-polarized metallic properties of zigzag superlattices are 

demonstrated. 
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Chapter 1 

 

Introduction 

 
1.1 Motivation    

Carbon is a primary material for life and the basis of all organic chemistry. Due to the flexibility 

of its bonding, carbon-based systems show an unlimited number of structures in nanomaterials, 

such as graphite, which can be viewed as a stack of graphene layers; carbon nanotubes, which is 

rolled-up cylinders of graphene; and fullerenes (C60), which are molecules consisting of wrapped 

graphene by the introduction of pentagon on the hexagonal lattice. Among systems with only 

carbon atoms, graphene plays an important role since it is the basis for the understanding of the 

electronic properties in other allotropes. 

 

Graphene is an allotrope of carbon, whose structure is one-atom-thick planar sheets of sp
2
-

bonded carbon atoms that are densely packed in a honeycomb crystal lattice [1]. Since its 

successful fabrication in 2004 [2], graphene has attracted tremendous interest from researchers to 

explore its properties both theoretically and experimentally. They found that graphene has some 

unique properties. Intrinsic graphene is a semi-metal or zero-gap semiconductor and has a 

breaking strength 200 times greater than steel, which means graphene appears to be one of the 

strongest materials ever tested [3].  

 

Graphene is a promising candidate for making a smaller and faster transistor because its electron 

mobility is an order of magnitude higher than that of silicon. However, the lack of an obvious 

band gap from graphene is a formidable problem, resulting in difficulties controlling the carrier 

type. Therefore, several strategies have been investigated to open a clear band gap in graphene, 
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such as applying mechanical strain, creating a potential difference in bilayer graphene, and 

patterned hydrogenation.  

 
After the discovery of graphene, researchers began to think that two-dimensional (2D) 

nanomaterials were more attractive for use in next-generation electronic nano-devices because 

compared to one-dimensional nanomaterials, 2D nanomaterials are relatively easy to fabricate 

complex structures. Therefore researchers and scientists started to focus on fabricating and 

investigating 2D nanomaterials which have the hexagonal lattices similar to graphene. Over past 

several years, a variety of crystal hexagonal nanomaterials in 2D have been fabricated and 

explored, such as boron nitride (BN) monolayer. Free standing single layer BN was successfully 

fabricated in 2009 [4]. Researchers synthesized BN monolayer via controlling energetic electron 

beam irradiation through a sputter process [5]. The boron-nitrogen bond length is 0.143 

nanometers [4], which is similar to the carbon-carbon bond length of graphene. The carbon-

carbon bond length of graphene is 0.142 nanometers [6]. Different from a graphene sheet, a zero-

gap semimetal, BN sheet display insulating characteristics due to the large ionicity of boron and 

nitrogen atoms [7].  

 

The reason why successful fabrication of BN monolayer is attractive to our research is as follows. 

After the discovery of graphene, researchers tried to design an interface between graphene and 

other honeycomb crystalline nanomaterial in order to tailor the electronic properties of this 

graphene-based material. But the large difference of bond lengths, makes it unfeasible to build. 

For example if the interface is between a silicon-carbide (SiC) monolayer and graphene, since 

the silicon-carbon bond length in SiC monolayer is 0.178 nanometers which is much bigger than 

carbon-carbon bond length in graphene, thus stretching graphene or compressing SiC monolayer 
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have to exist for fabricating the interface. This stretching or compressing process will distort or 

even break the hexagonal lattice in graphene or SiC monolayer. Due to the similarity of bond 

length between graphene and BN monolayer, interface of these two materials will keep the 

hexagonal lattice for both of them. Difference of electronic properties between graphene, 

semiconductor, and BN monolayer, insulator, is also an important reason to fabricate the hybrid 

structure consisting of graphene and BN monolayer. 

 

Most recently, Ci et al. [8] successfully fabricated domain-hybridized graphene and BN (C-BN) 

monolayer. Our research group proposed to design a nanomaterial based on graphene and BN 

monolayer. The nanomaterial is constructed on the heterostructure of superlattice model. 

Superlattice model is a concept in three-dimensions (3D). It describes a periodic structure of 

layers of two or more materials. Fig. 1.1 illustrates a gallium arsenide (GaAs) and aluminum 

arsenide (AlAs) superlattice on the substrate of GaAs.  

 

 

 

  

Fig. 1.1 Superlattice model of GaAs and AlAs on GaAs substrate. 
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This 3D superlattice model has been developed into a 2D concept. Our research group proposed 

to form a 2D superlattice atomic film which is consisting of the graphene and hexagonal boron 

nitride monolayer. The graphene-boron nitride superlattice (C-BNSL) monolayer consists of 

well-aligned and alternating graphene stripes and boron nitride stripes as shown in Fig. 1.2. The 

C-BNSL includes graphene-boron nitride (C-BN) interface section, which we term the C-BN 

boundary.  

 

Ci revealed that hybridized BN and graphene domain shows structural features and a band gap 

that have not been found in graphene, hexagonal BN monolayer or boron- and nitrogen-codoped 

graphene [8]. Therefore C-BN boundary in C-BNSL should play a key role for tuning the 

electronic properties.  

 

In this study the effect of mechanical strain on band gap was examed. The maximum in-plane 

mechanical strain exerted on C-BNSL monolayer was 20 %. This research also details how to 

incorporate Poisson effect when applying mechanical strain on C-BNSL monolayer. 
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1.2 Literature Review 

Many studies have been performed to investigate the effect of mechanical strain on graphene-

based materials. Researcher explored the effect of strain on phonon instability [9] and optical 

conductivity [10] of graphene. Scientists investigated the strain effect on changing of electronic 

properties of carbon nanotube [11-15]. Studies of graphene on top of SiO2 [16] or SiC surface 

[17] revealed a moderate strain induced by surface corrugations or lattice mismatch. Among 

these researches, the interplay between electronic property of graphene and mechanical strain is 

one of the most important areas. Several remarkable discoveries of electronic properties of 

graphene have been found. With symmetrical strain distribution, graphene is always a zero band-

Fig. 1.2 Graphene boron nitride superlattice (C-BNSL) monolayer. 
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gap semimetal. However, asymmetrical strain distribution on graphene gives an open band gaps 

[18]. This result indicates that the nature of band structure of graphene monolayer has strong 

relation to its lattice symmetry. Graphene also remains semimetallic under small strain on 

arbitrary directions [19]. If the magnitude of strain is less than 26.2 %, no energy gap opens with 

the zigzag strain (strain along the zigzag chain direction). Graphene with the armchair strain 

(strain along the armchair chain direction) also has no energy gap up to strain magnitude of 30 % 

[20].  

 

As mentioned above, several methods exist to open an obvious band gap of graphene. First is the 

effect of shear and multiaxial strain [21, 22]. Second is to open a gap in bilayer graphene under 

response to an external electric field [23]. Third is tuning the band gap of graphene by modifying 

the coverage of atomic hydrogen on graphene [24-28]. In addition to these three strategies, the 

most promising solution could be cutting graphene down to nanometer-sized graphene 

nanoribbons [29]. However, the mechanism of unzipping the carbon nanotubes or graphene 

directly from the edge in to graphene nanoribbons remains unclear [30-33]. In-depth 

understanding of the underlying electronic functionality is needed.  

 

In contrast to semimetallic graphene, BN monolayer is an insulator due to the large gap between 

conduction and valence bands. Heterostructures based on graphene and boron nitride monolayer 

have attracted tremendous attention from researchers and scientists, such as a patch of graphene 

embedded in hexagonal boron nitride monolayer [34], or atoms of different element doping into 

the graphene monolayer [35]. Li et al. [34] investigated the electronic properties of graphene 

quantum dots embedded in a hexagonal boron nitride sheet, and they found that the orbital 
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hybridization between 2p orbitals of B, N and C and the quantum confinement together 

determine the energy gaps of quantum dots.  

 

Other nanomaterials based on graphene and hexagonal boron nitride have also been studied, such 

as nanoribbons and nanotubes. Boron nitride nanoribbons have large band gaps [36] similar as 

BN monolayer. Comparing with the band gaps of graphene nanoribbons, which changes with 

respect to their width, the band gaps of boron nitride nanoribbons do not change significantly 

with width [37]. Because of this notable difference, and also there exists a similarity of bond 

length between graphene and boron nitride monolayer as mentioned above, therefore the 

heterostructure of graphene and BN attracts great attention. Some experimental work has been 

done on boron-doped graphene nanotubes [38, 39] and nitrogen-doped graphene nanotubes [40, 

41]. Du et al. [42] found that carbon atom substitution for either single boron or a single nitrogen 

atom in boron nitride nanoribbons could induce spontaneous magnetization, which is 

independent of the site of substitution or the type of boron nitride nanoribbons. 

 

 

1.3 Research Goal  

Motivated by the experimental and theoretical work mentioned above and due to the 

successful fabrication of domain hybrid graphene and boron nitride monolayer, this 

research is focused on the graphene boron nitride superlattice (C-BNSL) monolayer. This 

study is to investigate the feasibility of tailoring the electronic property of the C-BN 

superlattice monolayer by applying mechanical strain and considering large deformation 

Poisson effect. Using the first-principles calculation which is based on the density 

functional theory, we compute the detailed electronic band structures of C-BN 
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superlattices monolayer subject to in-plain strain with respect to the stripe width. Our 

group proposed to tune the electronic properties of C-BN superlattice monolayer by 

applying mechanical strain. 
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Chapter 2   

 

Computational Methods  

 
2.1 First-principles Calculations  

First-principles calculation (or ab initio, a Latin term meaning “from the beginning”) is a method 

used to solve Schrödinger’s equation without making any empirical model or introducing any 

experimental or empirical parameters. Because this method starts from well-established 

fundamental physical laws, it has relatively high accuracy. The time independent, nonrelativistic 

Schrödinger’s equation is written as 

 

H E                                                                          (2.1) 

 

where H is the Hamiltonian operator, and Ψ is a set of solutions or eigenstates of Hamiltonian. 

Associated with each eigenstate, there is an eigenvalue E, a real number that can satisfy the 

eigenvalue equation. The detailed definition of the Hamiltonian depends on the specific physical 

system. For instance, when systems have multiple electrons and multiple nuclei, Schrödinger’s 

equation has the form  

 
2

2

1 1 1

( ) ( , )
2

N N N

i i i j

i i i j i

V r U r r E
m    

 
       
 

                            (2.2) 

 

where m  is the mass of the electron, and E  is the ground state energy of electrons. In Eq. (2.2), 

the three terms in the bracket are: the kinetic energy of electron, the interaction energy between 

each electron and the collections of atomic nuclei, and the interaction between different electrons 

in order. Ψ is the electronic wave function of spatial coordinates of N electrons given as  



www.manaraa.com

10 
 

      ⃗⃗⃗       ⃗⃗⃗⃗                                                            (2.3) 

By solving the above Schrödinger’s equation (Eq. 2.2), the ground state energy can be obtained 

for the system. However, there are some problems when solving for a large number of electrons. 

There are three dimensions for each electron, thus all together 3N dimensions exist. For example, 

if one system has 100 Pd atoms (46 electrons for each Pd atom), then there are more than 10,000 

dimensions. It could be very time intensive to compute since this system has so many dimensions. 

Another problem is that it is impossible to directly observe the wave function for any particular 

set of coordinates. The quantity one can measure is the probability when N electrons are at a 

particular set of coordinates, 1r ,…,
Nr . This probability can be expressed as 

*

1 1( ,..., ) ( ,..., )N Nr r r r  , where the asterisk denotes a complex conjugate. Thus, density-

functional theory comes to people’s mind, which is based on two fundamental mathematical 

theorems proved by Kohn, Hohenberg and Sham in two publications in 1960s [43, 44]. 

Hohenberg and Kohn have proven two theorems [43], first of which states that “the ground-state 

energy from Schrödinger’s equation is a unique functional of electron density.” The electronic 

density at a particular position in space, ( )n r , is given as  

 
*( ) 2 ( ) ( ).i i

i

n r r r                                                         (2.4) 

 

The summation term in Eq. (2.3) is the probability that an electron in an individual wave 

function is located at the position r . The second Hohenberg and Kohn theorem [44] states that 

“the electron density that minimizes the energy of the overall functional is the true electron 

density corresponding to the full solution of the Schrödinger’s equation.” Therefore, if the “true” 



www.manaraa.com

11 
 

functional form is known, then finding the minimized functional by varying electron density is 

straightforward.  

 

The energy functional is given as 

 

[{ }] [{ }] [{ }]i known i XC iE E E                                                   (2.5) 

 

where [{ }]XC iE   is the exchange-correlation functional and it is defined to include all the 

quantum mechanical effects that are not included in the “known” terms. knownE   has the form 

 
2 2

* 2 3 3 3 3( ) ( )
[{ }] ( ) ( ) .

2 | |
known i i i ion

i

e n r n r
E d r V r n r d r d rd r E

m r r


        


                  (2.6) 

 

The terms on the right-hand side are, in order, the electron kinetic energies, the Coulomb 

interactions between the electrons and the nuclei, the Coulomb interactions between pairs of 

electrons, and the Coulomb interactions between pairs of nuclei [45]. 

 

Kohn and Sham have shown that finding the right electron density can be expressed in a way 

that involves only a single electron [46]. The Kohn-Sham equation has been given as 

 
2

2 ( ) ( ) ( ) ( ) ( ).
2

H XC i i iV r V r V r r r
m


 
        
 

                       (2.7) 

 

Comparing with Eq. (2.2), there is no summation here because one can only get single-electron 

wave functions ( )i r  depending on three spatial variables. On the left-hand side, V , HV , and 

XCV  are three potentials. In order to solve these Kohn-Sham equations, an initial and trial 

electron density have to be defined, and then the single-particle wave function   can be found. 
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By substituting this single-particle wave function into Eq. (2.3), the new electron density could 

be obtained. Then the Kohn-Sham equation can be solved again by using the calculated electron 

density. Iteratively as the previous steps until the calculated electron density is identical as the 

one used to solve the Kohn-Sham equations, then the total energy can be obtained by using this 

calculated electron density which has been defined as ground-state electron density [45]. 

 

In this study, DFT total-energy calculations were performed by employing a computer program 

named Spanish Initiative for Electronic Simulation with Thousands of Atoms (SIESTA) [47]. It 

uses the standard Kohn-Sham self-consistent density-functional method in the local density 

approximation (LDA) or generalized gradient approximation (GGA). The
 
SIESTA program, 

computes several quantities such as total and partial energies, atomic forces, stress tensor, 

electric dipole moment, electric density, and band structure. Due to these various functions, 

SIESTA has popularly been employed in various research fields such as material science, 

computational chemistry, and theoretic physics.  
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Chapter 3 

 

Calculation Details 

 
3.1 Determination of Bond Length  

Lattice constant refers to the constant distance between unit cells in a crystal lattice. Lattices in 

three dimensions generally have three lattice constants. However, in this study, only two lattice 

constants of the conventional unit cells need to be determined, since both graphene and boron 

nitride monolayer crystals have a low dimensional, 2D, hexagonal crystal structure. The bond 

length, 1.424 Å for graphene [6] and 1.438 Å boron nitride [4] monolayer, has been chosen in 

order to find the lattice constants according to the reference. 

 

To find the lattice constant, two-atom primitive unit cells for graphene and boron nitride 

monolayer were needed and they are marked as red rhombus in Fig. 3.1. The primitive unit cell 

is a minimum-area cell that can fill all space with translational symmetry. To get the lattice 

constants for individual graphene and boron nitride monolayer, we need to find the carbon-

carbon and boron-nitrogen bond length first. 

 

            

 
(a)                                                                       (b) 

Fig. 3.1. Primitive unit cells for individual graphene (a) and boron nitride (b) monolayer. 
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The following steps were used to find the bond length for graphene monolayer. Firstly, a range 

of bond lengths for graphene monolayer can be set according to the reference [48], from 1.418 Å 

to 1.427 Å. Values, which are slightly around 1.424 Å as the reference, were picked in this range 

as bond lengths. Then we used these chosen values to create several primitive unit cells. Next the 

total energy each primitive unit cell contains was calculated under a fully periodic boundary 

condition by the first-principles calculations. Then collecting the data of total energy, we can get 

a smooth curve of total energy with respect to bond lengths. The smooth curve for graphene 

monolayer of total energy is shown as Fig. 3.2 (a). In this curve, there has a primitive unit cell 

whose total energy is smaller than the other primitive unit cells. The value to build this primitive 

unit cell is the carbon-carbon bond length of graphene monolayer. The same procedure is applied 

to find the boron-nitrogen bond length for boron nitride monolayer. The values we found are 

1.422 Å for carbon-carbon bond length of graphene monolayer and 1.438 Å for boron-nitrogen 

bond length of boron nitride monolayer. 

 

 

 

 

 

Fig. 3.2. Total energy curve of graphene (a) and boron nitride (b) primitive unit cells with  

respect to bond lengths. Dash line is the guide indicating the corresponding bond length. 

(a)                                                                         (b) 
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In order to completely relax the primitive unit cell with bond length of 1.422 Å for graphene and 

1.438 Å for boron nitride monolayer, it need to be optimized again by the conjugate gradient 

optimization. And the cell size is allowed to change, so we can check if atoms change their 

positions. To further verify that this bond length is the most optimized one, a 4-atom unit cell, 

conventional unit cell as highlighted rectangular in Fig. 3.3, was generated and optimized with 

same criteria as before. After optimization, it is noticed the atoms do not change their positions. 

Therefore, 1.422 Å and 1.438 Å were used as the bond length of graphene and boron nitride 

monolayer crystal. Due to the geometry relation between the bond length and the lattice constant 

of conventional unit cell, the lattice constant of conventional unit cell for graphene and boron 

nitride monolayer can be found respectively from the above bond length for individual graphene 

and boron nitride monolayer. 

 

      

 

 

 

3.2 Superlattice Models 

Before the computation of the energy gap for graphene boron nitride superlattice (C-BNSL) 

monolayer, superlattice models were generated with different widths based on the 4-atom 

Fig. 3.3 Conventional unit cell of graphene monolayer (a) and boron nitride monolayer (b). 

(a)                                                                              (b) 
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conventional unit cell. In order to compute the total energy gap, C-BNSL supercell is placed in a 

fully periodic three-dimensional (3-D) orthogonal simulation box (Fig. 3.4). 15 Å vacuum 

spaces are introduced in the z-direction which is perpendicular to the C-BNSL monolayer in 

order to remove spurious interactions between periodic monolayers.  

 

   

 

 

 

 

The method to name the boundary edge of graphene and boron nitride monolayer follows the 

conventional naming method. The edge is named as armchair edge if the atoms at the edge are 

arranged as atoms near the arrow line in Fig. 3.5 (a). The zigzag edge consists of atoms at the 

edge which are arranged as atoms near the arrow line in Fig. 3.5 (b). To form the graphene boron 

nitride superlattice monolayer, the C-BN boundary must exist. From Fig. 1.2, the C-BN 

boundary matches graphene stripes and BN stripes. The C-BN boundary matches same grahpene 

edge and boron nitride edge. There are two types of boundary: armchair and zigzag C-BN 

boundary. An armchair C-BN boundary is illustrated in Fig. 3.6 (a). The armchair boundary of 

the C-BN superlattice model is matched by two armchair edges from both graphene monolayer 

and boron nitride monolayer. Similarly, the zigzag boundary is matched by two zigzag edges of 

graphene monolayer and boron nitride monolayers. The blue rectangular in Fig. 3.6 (b) is 

indicated the zigzag C-BN boundary.  

Fig. 3.4 Example of simulation box for armchair C-BNSL24 (a) and zigzag C-BNSL06 (b) 

(b) 

(a) 
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The superlattice models follow the conventional naming method. For example, graphene boron 

nitride superlattice monolayers which contain armchair C-BN boundary are called as aC-BNSLn, 

where n is the number of chains in the width direction. Similarly, graphene boron nitride 

superlattice monolayer whose C-BN boundary type is zigzag are called as zC-BNSLn, where n 

is the number of chains in the width direction. Examples as aC-BNSL24 and zC-BNSL06 

(Fig.3.4) have been selected to illustrate the naming method of C-BNSL models. 

(a)                                                                          (b) 

Fig. 3.6 Armchair C-BN boundary (a) and zigzag C-BN boundary (b). 

Fig. 3.5 Armchair edge of boron nitride monolayer (a) and zigzag edge of graphene monolayer (b). 

    (a)                                                                   (b) 
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In this study, totally 19 aC-BNSL models and 7 zC-BNSL models were built, which cover width 

range from 14.60 Å to 59.44 Å for armchair C-BN superlattice models and 21.57 Å to 47.45 Å 

for zigzag C-BN superlattice models. The energy cutoff and energy shift parameters are set as 

250 Ry and 0.01 Ry respectively for energy gap calculations of armchair models. For zigzag 

models, these parameters are set as 200 Ry of energy cutoff and 0.01 Ry of energy shift. 

 

To calculate the energy gap of each armchair C-BN superlattice model, the k-point mesh is 

selected in the way that 16×m×1 where m is kept as an integer resulting from 16 divided by the 

number of 4-atom conventional unit cell in the width direction. For example, 16×(16/4)×1 k-

point mesh is chosen for aC-BNSL08, 16×(16/5)×1 k-point mesh is chosen for aC-BNSL10, and 

16×1×1 is also chosen for the models which have more than sixteen 4-atom conventional unit 

cells in the width direction. For zigzag C-BN superlattice models, the k-point mesh are selected 

by a similar way, but with the k-point of 24. Therefore, k-point mesh has been selected as 

24×m×1 for zigzag models, where integer m can be obtained from 24 divided by the number of 

4-atom conventional unit cell in the width direction. For example, 24×(24/2)×1 k-point mesh is 

for zC-BNSL04, 24×(24/3)×1 k-point mesh is for zC-BNSL06, and 24×1×1 k-point mesh is for 

all zC-BNSLs which have more than twenty-four 4-atom conventional unit cells in the width 

direction has been selected.  

 

Before any C-BNSL models are actually built, it needs a rational way to form the C-BNSL 

models, since the lattice constant of graphene monolayer is smaller than that of the boron nitride 

monolayer, which means that we need to make the graphene stripes longer to match the boron 

nitride stripes or make the boron nitride stripes shorter to match the graphene stripes. Our 

research group considered three different methods to simulate the C-BNSL models: stretching 
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the graphene monolayer, compressing the boron nitride monolayer, or a half-stretching the 

graphene monolayer and half-compressing the boron nitride monolayer. These three different 

methods are used to build a same C-BNSL model with exact width. After calculating the total 

energy each model contains by the first-principles calculation, we compared the results. Table 

3.1 lists the results of total energy with respect to the three different methods to build C-BNSL 

models. It indicates that the model of stretching graphene has the lowest total energy. It means 

that the model of stretching graphene monolayer is a more stable method than the other two ones 

to build C-BNSL monolayers. Thus all other C-BNSL models will be built by stretching 

graphene monolayer. 

 

 

Method to Build C-BNSL Models Total Energy (eV) 

Compressing BN Monolayer -4014.89899 

Stretching Graphene Monolayer -4035.37386 

Half Stretching – Half Compressing -4035.37306 

 

 

After we determined the method to create the C-BNSL models, all the C-BNSL models need to 

be optimized. Strain will be applied on the C-BNSL models after this optimization. Also we will 

consider the large deformation Poisson effect on the models after this optimization. To do so, we 

set the atomic structures, which the graphene sheets have been perfectly stretched and matched 

with the boron nitride sheet, as the input coordinates and set all the parameters as the ones in 

energy gap calculations, then apply the first-principles calculation to optimize the atomistic 

structures. To fully optimize the atomic structure, conjugate gradient (CG) steps need to be set as 

300. The calculation of SIESTA program should stop when the results meet the converge value. 

Based on the size of the C-BNSL models in this research, 300 CG steps is large enough for 

Table 3.1 Total energy of three methods to build C-BNSL models. 
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convergence to happen. Therefore the relaxed atomic structures from the output file of SIESTA 

program will be used for next study. Totally there are 19 armchair C-BNSL models and seven 

zigzag C-BNSL models. Next we will determine how to apply mechanical strain and consider 

the large deformation Poisson effect on these C-BN superlattice monolayers. 

 

3.3 Applying Mechanical Strain  

Strain is a description of deformation in terms of relative displacement of particles in the 

deformed body. The relative displacement is between a reference configuration (initial 

configuration) and a current configuration (deformed configuration). Similar to stresses, strain 

can also be classified as normal strain and shear strain. Normal strain is the strain that acts 

perpendicular to the face of an element. The strain acts along the face of an element is called as 

shear strain. In this study, normal strain is the only type of strain which will be applied on all the 

C-BNSL models.  

 

A variety of strain measurements have been defined in continuum mechanics, such as Cauchy 

strain, stretch ratios, and logarithmic strain. In this research the Cauchy strain was used. The 

Cauchy strain (engineering strain) is expressed as the ratio of total deformation to the initial 

shape of the material body in which the forces are being applied. The equation for engineering 

strain can be expressed as Eq. (3.1). ΔL is the length change in the direction of forces being 

applied, L is the original length of the line element, and   is the length of the deformed line 

element. 

  
  

 
 

   

 
                                                                  (3.1) 
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After determining the type of the strain we will use in this research, the method of applying 

strain to the C-BNSL models must be fixed. Fig 3.7 shows how 10 % normal strain in x-direction 

was applied. In Fig 3.7 solid lines represent the initial configuration, and the dash lines represent 

the body after stretching. The rectangular of ABCD is the initial body and AEFD is the deformed 

body. Based on the definition of engineering strain, 10 % normal strain in the x-direction means 

the length of BE is one-tenth of length of AB, which is shown as Eq. (3.2) 

 

  
  

   
 

   

   
 

       

   
                                    (3.2) 

 

 

 

 

Therefore, to apply the mechanical strain on C-BNSL models, a parameter should be multiplied 

on the atomistic coordinate of C-BNSL models. For example, if 10 % normal strain in x-

direction needs to be applied on aC-BNSL10, so 1.1 is the parameter should be multiplied on 

every X coordinates of aC-BNSL10 and keep all Y coordinates unchanged. After we multiply the 

specific parameter by the atomistic distance of C-BNSL models that we got after optimazation 

from Section 3.3, the strain has been applied successfully on all C-BNSL models. 

 

 

Fig. 3.7 10 % normal strain on x-direction. 
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3.4 Large Deformation Poisson Effect 

When a material is stretched in one direction, the other two directions perpendicular to the 

stretching direction tend to contract. This phenomenon is called the Poisson effect. Fig 3.7 

illustrates the Poisson effect in 2D. The stretching is in x-direction and the material contracts in 

y-direction. Poisson ratio is the ratio of the fraction of expansion divided by the fraction of 

contraction.  

 

 

 

In Fig 3.8, solid lines represent the initial configuration, and the dash lines represent the 

deformed body. If we neglect the Poisson effect as in section 3.3, the line elements AG and EF 

will not become shorter. However, the deformation Poisson effect will shrink the AG and EF line 

elements instead of unchanged. 

 

Assuming that the material is stretched or compressed in an axial direction (x-direction) as strain 

  , and the other two directions (y and z direction) happen to be compressed or stretched as    

and   . The Poisson ratio can be mathematically expressed in Eq. (3.3) as follows. The negative 

sign in Eq. (3.3) makes Poisson ratio positive. 

 

Fig. 3.8   Large deformation Poisson Effect in 2D. 



www.manaraa.com

23 
 

Fig. 3.9 Parallel (a) and perpendicular (b) direction of strain on aC-BNSL model and  

perpendicular direction of strain on zC-BNSL (c). 

                                   (a)                                                   (b)                                                    (c) 

   
  

  
  

  

  
                                                    (3.3) 

 

In our research, the direction along the C-BN boundary direction is x-direction. The direction 

perpendicular to x-direction is y-direction. Three directions of strain were defined on C-BNSL 

monolayers. They are: x-direction of strain on armchair graphene-boron nitride superlattice (aC-

BNSL) monolayers, y-direction of strain on aC-BNSL monolayers and y-direction of strain on 

zigzag graphene-boron nitride superlattice (zC-BNSL) monolayers. We will consider following 

ways to name these directions of strain in this research. The strains are denoted by their 

directions with respect to the C-BN boundary direction. For example, x-direction of strain is 

called parallel strain and y-direction of strain is called perpendicular strain.  

 

Therefore the Poisson ratios we should find in this study include: (1) Poisson ratios for aC-BNSL 

models subject to parallel strain, (2) Poisson ratios for aC-BNSL models subject to perpendicular 

strain, and (3) Poisson ratio for zC-BNSL models subject to perpendicular strain. Fig. 3.9 (a) and 

(b) illustrates parallel and perpendicular direction of strain on aC-BNSL models. Fig. 3.9 (c) 

indicates the perpendicular direction of strain on zC-BNSL models. 
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It is not clear if the Poisson ratio for C-BNSL monolayers is constant or not. Hence we need to 

find every Poisson ratio with respect to different strains. The width of models in this research 

covers from 14.60 Å to 59.44 Å for aC-BNSL and 21.57 Å to 47.45 Å for zC-BNSL models. I 

chose two intermediate sized models as example models, one from aC-BNSL and one from zC-

BNSL, to calculate the Poisson ratio for these models with respect to all the strains.  

 

 

 

One route to find the Poisson ratio is to fix the strain on the specific direction, then vary the 

strain in the perpendiculat direction. Following this approach, we consider following procedures 

to get the Poisson ratio for a fixed strain in a specific direction of a particular model. Firstly, we 

apply this fixed strain, e.g.  𝑝𝑎𝑟𝑎  𝑒 , on the example C-BNSL model in that specific direction as 

shown in Fig.3.10. Then, we vary the other direction by several very small incremental strains as 

shown in Fig. 3.9. We calculated the total energy for each incremental strain. By collecting all 

the data, there will be a smooth curve of total energy with respect to different incremental strains. 

It will have a C-BNSL model whose total energy is a minimum. The two strains from this model, 

fixed strain  𝑃𝑎𝑟𝑎  𝑒  and the varying strain  𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢 𝑎𝑟, can be used to calculate the Poisson 

Fig. 3.10 Applying the fixed strain of the specific direction on the example model. 
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ratio by its definition     𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢 𝑎𝑟  𝑃𝑎𝑟𝑎  𝑒 ⁄ . Finally, this is the Poisson ratio for the 

certain strain,  𝑝𝑎𝑟𝑎  𝑒 , on the example C-BNSL model in that specific direction. 

 

 

 

We used 5 % parallel strain on aC-BNSL24 model. The incremental strain varied from -0.003 

and up to -0.0145. After the calculation of total energy, the energy curve with respect to 

incremental strain is illustrated in Fig. 3.12. 

 

Fig. 3.11 Changing the other direction due to large deformation Poisson effect. 
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The dash line in Fig. 3.12 indicates the minimum energy configuration. Two strains from this 

model can be used to calculate the Poisson ratio for 5 % parallel strain on aC-BNSL24 model. 

Since the incremental strain from that model is -0.00859, the Poisson ratio is calculated as 

     𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢 𝑎𝑟  𝑃𝑎𝑟𝑎  𝑒 ⁄                        ⁄ . Therefore, the Poisson ratio 

for 5 % parallel strain on aC-BNSL24 model is 0.1718. For the other strain cases, Poisson ratios 

can be found by the same steps. Fig 3.13 shows Poisson ratio changes when parallel strains 

increases from 1 % to 20 % on aC-BNSL24 models. The same procedure can be applied to find 

out the Poisson ratios for corresponding perpendicular strain of aC-BNSL24 (Fig. 3.14). Since 

the Poisson ratio for 1 % perpendicular strain is over 0.5, therefore the 1 % perpendicular strain 

will not be applied for the electronic band structure calculation. 

 

Fig. 3.12 Energy curve for 5 % parallel strain on aC-BNSL24 model via incremental strain.  

Dash line indicates the corresponding incremental strain. 
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Fig. 3.13 Poisson ratios for parallel strain for aC-BNSL24. 

Fig. 3.14 Poisson ratios for perpendicular strain for aC-BNSL24. 
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We applied the similar procedure to zC-BNSL models to find the Poisson ratio for perpendicular 

strain. Fig. 3.15 illustrates all the Poisson ratios from the two example models.  

 

 

     

All the Poisson ratios from Fig. 3.15 are from the two example models, aC-BNSL24 and zC-

BNSL16. To compare the Poisson ratio for same strain on different models, we tested a specific 

value of strain, 15 % of strain for aC-BNSL and 10 % of strain for zC-BNSL. We calculated the 

Poisson ratio with respect to 15 % parallel strain on several other aC-BNSL models, aC-BNSL08, 

aC-BNSL16, aC-BNSL32 and aC-BNSL40. All the Poisson ratios from these above models and 

also the example model are listed in table 3.2. 

 

Different aC-BNSL Models  Poisson Ratio (15 % Parallel Strain) 

aC-BNSL08 0.111091756 

aC-BNSL16 0.113413817 

aC-BNSL24 0.115218773 

aC-BNSL32 0.116456094 

aC-BNSL40 0.117185623 

Poisson Ratio  

Fig. 3.15 Poisson ratios for different models and different direction of strain. 

Table 3.2 Poisson ratios with respect to 15 % parallel strain on different aC-BNSL models. 
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From table 3.2, the difference between the Poisson ratio from the example model and the ones 

from the other aC-BNSL models is quite small. The difference is within 0.5 %. It is negligible 

for the numerical calculations. Thus, the Poisson ratio from the example models can be used on 

all the other models for the parallel strain. We calculated the Poisson ratio for the 15 % 

perpendicular strain on other aC-BNSL models and 10 % perpendicular strain on other zC-BNSL 

models and compared the results to the Poisson ratios from the example models. The data is 

shown in table 3.3 and 3.4.  

 

 

Different aC-BNSL Models  Poisson Ratio (15 % Perpendicular Strain) 

aC-BNSL08 0.196833596 

aC-BNSL16 0.197636776 

aC-BNSL24 0.198971049  

aC-BNSL32 0.199257623 

aC-BNSL40 0.201358236 

 

 

 

Different zC-BNSL Models  Poisson Ratio (10 % Perpendicular Strain) 

zC-BNSL10 0.201666281 

zC-BNSL16 0.202368723 

zC-BNSL22 0.203856296 

 
 

Similar to the result from the comparison of Poisson ratio of 15 % parallel strain on aC-BNSL 

monolayers, there is no large difference between the Poisson ratio from the example model and 

the Poisson ratios from all the other different C-BNSL models. This is a small difference for 

Table 3.3 Poisson ratios with respect to 15 % perpendicular strain on different aC-BNSL models. 

Table 3.4 Poisson ratios with respect to 10 % perpendicular strain on different zC-BNSL models. 
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numerical calculation. Therefore, we used the Poisson ratios from the example models on all the 

other C-BNSL monolayers. 

 

After the strain and the corresponding Poisson ratio are applied on the C-BNSL models, another 

minimization is needed. This minimization is a test whether the atomic position changes. The 

results indicates that the atomic position do not change after the minimization. Therefore, the 

Poisson ratio from our calculations can properly reflect the length compressed on the direction 

perpendicular to the strain direction.  
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Chapter 4 

 

Numerical Results and Discussions 

 
4.1 Armchair C-BNSL Models subject to Strain  

After we developed a method to build the C-BNSL models, and computed the Poisson ratios 

with respect to strains on different directions, we formed the strained C-BN superlattice models 

and considered the large deformation Poisson effect. The first-principles calculation, which is 

based on the density functional theory, was used to calculate their band structures and get their 

energy gaps.  

 

Since there are different strain cases and models with different width in this study, we considered 

the following steps to compute the band structure calculations for aC-BNSL models with strains. 

Take parallel strain on aC-BNSL models as an example. First, we chose a specific aC-BNSL 

model, say aC-BNSL24, and applied all the strains and their matching Poisson ratio on this 

model. We calculated the band structure and got the energy gap for each strain case, and 

collected the data. An energy gap curve for aC-BNSL24 was developed with respect to all the 

strain, as Fig. 4.1 shown. After this, we applied the same procedure for the other aC-BNSL 

models. Therefore, we have several energy gap curves for each specific aC-BNSL model with 

respect to all the strain on it. Finally, we combined all the energy gap curves together to form a 

3D plot of energy gaps of aC-BNSL models with respect to all parallel strain as shown in Fig. 

4.2. In this plot, the energy gaps changes not only with respect to the width of the models, but 

also with respect to strain. In Fig. 4.2, the model width direction is marked as the model number. 

The model number is set as the number of conventional unit cell in the width direction. It means 
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the width of a model equals to the number of conventional unit cells in the width direction times 

lattice constants in width direction. 

 

 

 

 

Fig. 4.1 Energy gap curve for aC-BNSL24 with parallel strain. 

Fig. 4.2 3D plot of energy gap of aC-BNSL subject to parallel strain. 
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The same steps were applied to calculate energy gaps for aC-BNSL model with respect to 

perpendicular strains. Firstly, we can get an energy gap curve for a specific model (Fig. 4.3). A 

Fig. 4.3 Energy gap curve for aC-BNSL24 with perpendicular strain. 

Fig. 4.4 3D plot of energy gap of aC-BNSL subject to perpendicular strain. 
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                         (a)                                                                        (b) 

Fig.4.5 Contour plot of aC-BNSL with parallel strain (a) and perpendicular strain (b) 

similar 3D energy gap plot with respect to strain value and model width is shown in Fig. 4.4. 

And the model width is also marked as the model number as same as what we did in the energy 

gap plot for parallel strain. Fig. 4.2 and 4.4 indicate that the band gaps for strained aC-BNSL 

models oscillate not only with respect to the strain, but also with respect to the width of the 

models. 

 

 

To see the results more clearly, we plotted results on a contour. One plot contour is shown in Fig 

4.5.  In the contour plot, the red area indicates a larger energy gap and the blue area represents a 

smaller energy gap. From the Fig. 4.5 we can tell, no matter what the direction of strain is 

applied on the aC-BNSL models, the pattern of the energy gap is very similar. The pattern 

always goes to the diagonal direction of the combination of strain direction and the width 

direction. 

 

 

 

The other 2-D plot is a lateral view from the strain axis which is shown in Fig 4.6. In the lateral 

view of the energy gap, each vertical line represents the range of the energy gap for the model 
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Width (Å) Width (Å) 

with specific width. The point at the top for each vertical line represents the largest energy gap 

for this specific model. The point at the bottom for each vertical line represents the smallest 

energy gap. For both parallel and perpendicular strain cases, largest and smallest energy gap 

values are both decreasing with respect to increasing aC-BNSL model width (Fig. 4.6). However, 

there are no zero energy gaps, which means that physically there is no band gap close for aC-

BNSL models when we apply strain on them. Fig. 4.6 indicates that there is no energy gap larger 

than 2 eV for strained aC-BNSL models.  

 

The electronic properties of metal, semiconductor and insulator can be indicated by the band 

gaps. The electronic band structure of metals shows an overlap of the valence band and the 

conduction band, which means the band gap is zero. The electronic band structure of insulators 

has separation between the valence band and the conduction band with a relatively large band 

gap (>2 eV). The electronic band structure found in the semiconductors is the same as for 

insulators except that the band gap is relatively narrow (<2 eV). 

 

 

 

 

 Fig.4.6 Lateral view plot of aC-BNSL with parallel strain (a) and perpendicular strain (b) 

(b) (a) 
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Since band gaps for strained aC-BNSL models are in the range which is larger than 0 eV and 

smaller than 2 eV, therefore there is no change of electronic state when we apply parallel or 

perpendicular strains and their corresponding Poisson ratio on aC-BNSL models.  

 

 

 

4.2 Zigzag C-BNSL Models subject to Strain  

For zigzag C-BN superlattice models, we apply the spin-polarized calculation. The spin-

polarized edge states are obtained in the calculations that correspond to antiferromagnetic (AF) 

alignments of the spin moments at opposite edges of the zC-BNSL models. In the SIESTA 

program, the spin directions of electrons of two carbon atoms on the C-BN boundary were given 

by the opposite directions. One is the α spin, which is in the spin-up direction. Other is the β spin, 

which is the spin-down direction. In the electronic band structures of strained zC-BNSL models, 

the red line represents the band structure of the spin-up electron and the blue line represents the 

band structure of the spin-down electron. The overlap of the band structures of the spin-up and 

spin-down electrons near the Fermi level indicates the same electronic properties they have. The 

separation of the two electrons represents that these two electrons have different electronic 

properties. 

 

Before we apply strain on the zC-BNSL models, we calculated band structure for several zigzag 

C-BNSL models without applying strain. Fig. 4.7 illustrates the electronic band structure of some 

zC-BNSL models without strain. It shows separation of band structure between spin-up electron 

and spin-down electron in some of the zC-BNSL models.  
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We calculated the electronic band structure for all the zigzag C-BN superalttice models without 

applying strain. The results are shown as Fig. 4.8. We found that the energy gap for spin-up and 

spin-down curves overlap and are both not zero for small zC-BNSL models. This status, spin-up 

and spin-down electrons both with a same open energy gap, means the electronic property of the 

semiconductor. Then the separation appears when we increase the width of zC-BNSL models. It 

has an open energy gap for spin-down electron and a close energy gap for spin-up electron. This 

period gives us an electronic property of half-metallic. Finally, when the width keeps increasing, 

we can find that the spin-up and spin-down electrons overlap again and both have the close 

energy gap. This status gives us an electronic property of metal. The whole procedure of 

increased width of zC-BNSL models provides us a transition of electronic property of zC-BNSL 

from the semiconductor to half-metallic, and finally to metal.  

Fig. 4.7 Electronic Band structure for different zC-BNSL models without strain. 
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Next, strains were applied on the zC-BNSL models to see if the mechanical strain and the 

Poisson effect of large deformation will change the electronic property of the zC-BNSL models. 

The direction of strain we will apply on the zC-BNSL models is the perpendicular strain as 

mentioned above in Section 3.4, which is illustrated in the Fig. 4.9. The procedure to calculate 

the electronic band structure of zC-BNSL models with strain is similar to the steps in Section 4.1 

for the band structure calculation of strained aC-BNSL models. We will choose a zC-BNSL 

model, apply all the strains and their corresponding Poisson ratio on this model, and finally 

calculate the electronic band structure.  

 

Fig. 4.8 Spin polarized zC-BNSL energy gaps without strain. 

Fig. 4.9 The direction of perpendicular strain on zC-BNSL10. 
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First, we calculated band structure of a small zC-BNSL model, zC-BNSL10. The electronic band 

structure of zC-BNSL10 with increasing strain is illustrated in Fig. 4.10. From Fig. 4.10, we 

found that there is still the separation between spin-up curve and spin-down curve when we 

increased strain up to 6 % and 10 %. Furthermore, when the strain is up to 13 %, the spin-up 

electron shows an open energy gap which was initially closed. This process of opening a band 

gap can provide us a transition of electronic properties from semi-metallic to semiconductor 

which means the strain on zC-BNSL10 models can tune its electronic properties.  

 

Next, we calculated electronic band structure for a large zC-BNSL model, zC-BNSL 20. The 

result is shown as Fig. 4.11. With respect to the increasing strain, a separation between spin-up 

and spin-down at 7 % strain, and shows the band gap open for spin-up band at 11 % strain. More 

surprisingly, we found that at 13 % strain, there shows a close band gap for spin-down which 

was initially open.  

 

 

 Fig. 4.10 Electronic band structures of zC-BNSL10 with increasing perpendicular strain 
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The pattern of electronic band structure for zC-BNSL20 with respect to increasing perpendicular 

strain is showing the separation of spin-up band and spin-down band and the opening for spin-up 

band and the closing for spin-down band. This pattern can tailor the electronic properties of zC-

BNSL20 from semi-metallic to semiconductor, finally to semi-metallic again.  

 

With this remarkable result, we did the electronic band structure calculation of all the zC-BNSL 

models with respect to the increasing perpendicular strain. We computed the band gap for both 

spin-up electron and spin-down electron. The results are shown in Fig. 4.12. We found that all 

the band gaps of spin-up electron have a similar pattern with respect to the increasing strain, so 

do the spin-down band gaps. For spin-up electron as shown in Fig. 4.12 (a), initially the energy 

gap is close, when the strain increases the energy gap begins to open at a certain point of strain. 

After this point, the energy gaps keep becoming larger quickly with respect to the increasing 

strain. For large zC-BNSL models, the energy gaps of spin-up electron stop to increase quickly 

and the band gaps stay between 0.3 eV and 0.4 eV. 

Fig. 4.11 Electronic band structures of zC-BNSL20 with increasing perpendicular strain. 
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For spin-down band gaps as illustrated in Fig. 4.12 (b), initially the energy gap is open, and 

becomes larger when the strain increases. At some specific point of strain, the energy gap begins 

to fall and keep falling with respect to the increasing strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 (a)                                                                       (b) 
 

Fig. 4.12 Changing pattern of spin-up (a) and spin-down (b) band of zC-BNSL  

subject to perpendicular strain. 
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Chapter 5 

 

Conclusion 

In this research, we have studied how to determine the lattice constant of individual graphene 

and boron nitride monolayers, the method to build C-BN superlattice model, how to account for 

a large deformation Poisson effect on C-BNSL monolayer and how to find the Poisson ratio with 

respect to the corresponding strain. Finally, we calculated the electronic band structure for aC-

BNSL and zC-BNSL respectively. In the process, we found that energy gap values for strained 

aC-BN superlattice monolayers oscillate with respect to not only strain, but also with respect to 

the model width regardless of direction of strain applied on the aC-BNSL models. The range of 

energy gap for strained aC-BNSL monolayer is 0.2 -1.5 eV for parallel strain and 0.05 – 1.2 eV 

for perpendicular strain. Obviously, there is no close energy gap or energy gap over 2 eV for 

strained aC-BNSL monolayer, which means there is no electronic property changing when we 

apply strain on aC-BNSL monolayer. For zigzag C-BNSL monolayer, we did the spin-polarized 

calculation. We added spin direction for the specific two carbon atoms in the zC-BNSL 

supercells. The two carbon atoms are at the zigzag C-BN boundary and we define these carbon 

atoms with opposite spin directions. After the electronic band structure calculation, we found 

that strain can change the spin properties of zigzag C-BNSL monolayer. Furthermore, strain can 

not only open a band gap for spin-up band, but also can close a band gap for spin-down band of 

zC-BNSL monolayer. This process can bring a transition of zC-BNSL monolayer from metal to 

half-metallic, and then to a semi-conductor. It means the mechanical strain on zC-BNSL 

monolayer can change its electronic property. This finding has significant meaning, since the 

electronic property can be changed only by applying strain and considering large deformation 

(c)  
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Poisson effect. This unusual electronic property of C-BN superlattice monolayer makes it a 

promising nanomaterial for building electronic devices. For future research, we will continue to 

investigate the heterostructures which is based on graphene and boron nitride monolayer.  
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